ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Леди туманов

Красивая сказка >>>>>

Черный маркиз

Симпатичный роман >>>>>

Креольская невеста

Этот же роман только что прочитала здесь под названием Пиратская принцесса >>>>>

Пиратская принцесса

Очень даже неплохо Нормальные герои: не какая-то полная дура- ггероиня и не супер-мачо ггерой >>>>>

Танцующая в ночи

Я поплакала над героями. Все , как в нашей жизни. Путаем любовь с собственными хотелками, путаем со слабостью... >>>>>




  106  

*Динамическая ядерная поляризация в твердых телах

Перехожу к третьему явлению, обнаруженному в эти годы в нашей лаборатории, а именно к динамической ядерной поляризации (или ДЯП) в твердых телах. Ее разные проявления и приложения занимали нас почти четверть века.

В своей работе Оверхаузер очень настаивал на том, что электроны проводимости в металлах, насыщение резонанса которых приводило к громадному увеличению ядерной поляризации, подчинялись так называемой статистике Ферми, подробности которой я здесь опущу. В моей женевской работе я показал, что эта предпосылка была излишней, и предсказал возможность ДЯП в жидкостях, впоследствии доказанной в нашей лаборатории (о чем рассказано выше). Хорошо известно, что спины парамагнитных примесей, растворенных в жидкостях, где они играют роль спинов электронов проводимости, статистике Ферми не подчиняются. Не я один настаивал на необязательности статистики Ферми для эффекта Оверхаузера; Блох это тоже заметил и сделал заключение, что эффект Оверхаузера должен быть наблюдаем и в твердых диэлектриках. Но это заключение было в общем ошибочным, как я показал в своей женевской работе. Тщательный анализ роли электронных спинов в ядерной релаксации позволил обнаружить малозаметное, но существенное различие ее механизма в металлах и жидкостях, с одной стороны, и твердыми диэлектриками — с другой. Неверующий читатель может на свой страх и риск, обратиться к книге «Ядерный магнетизм» за доказательством. Но, если ДЯП с помощью эффекта Оверхаузера или его «унтерхау-зерского» варианта была невозможна в твердых диэлектриках, есть ли другой метод?

То, к чему я стремился (да и не только я), не было увеличением во много раз очень малых поляризаций, переходя, скажем, от одной миллиардной доли к нескольким миллионным, как в магнитометре для земного поля, или от нескольких миллионных долей к одной тысячной, как было с жидкостями в сильных полях. Целью была высокая абсолютная поляризация, близкая к стопроцентной, для ряда применений, которые я опишу позже.

Но при динамических увеличениях порядка нескольких сотен в лучшем случае (поле земли было специальным исключением) начинать приходилось с «естественной» ядерной поляризации в несколько тысячных, т. е. с температуры порядка 1 K. Для металлов можно было бы подумать об использовании обычного эффекта Оверхаузера, если бы при низких температурах так называемый скин-эффект не препятствовал проникновению в глубь металла насыщающего микроволнового поля. Что же касается жидкостей, то при температурах порядка 1 R они… не жидкости. Единственным исключением является изотоп гелия 3He (4Не не имеет ядерного спина). Между 1955 и 1960 годами у нас в лаборатории его не было, но позже мы, как и другие, безуспешно пытались поляризовать его с помощью эффекта Оверхаузера. Причины неудачи не поняты до сих пор.

Решение задачи ДЯП в твердых диэлектриках пришло мне в голову в один прекрасный день. Попробую его изложить в бессовестно упрощенном, но, в принципе, правильном виде.

Рассмотрим образец твердого диэлектрика, содержащий ядерные спины I в нормальной пропорции и малую примесь электронных спинов S, скажем, один S на несколько тысяч I. Положим для магнитного поля и для температуры условия, скажем, 2,5 Тесла и 1 K, при которых электронные спины поляризованы почти на 100 % и все «смотрят вверх», а ядерные спины имеют почти нулевую поляризацию, при которой столько же из них смотрят «вверх», сколько и «вниз».

Предположим еще, что время спин-решеточной релаксации спинов S очень коротко, так что если по какой-нибудь причине спин S флипнет «вниз», релаксация моментально вернет его в равновесие, т. е. «вверх». Все эти гипотезы вполне реалистичны. Наша задача заключается в том, чтобы перевести все спины I из состояния «вниз» в состояние «вверх».

Возьмем ядерный спин I, который направлен «вниз». Он мог бы перейти в «вверх», флип-флопнув с электронным спином, направленным «вверх». Но для этого нужна энергия Ω = (Ω S — Ω I ), которую в жидкости можно почерпнуть из кинетической энергии относительного движения этих спинов, но которая совершенно отсутствует в твердом образце при низкой температуре. Этот флип-флоп можно все-таки произвести, взяв эту энергию у внешнего микроволнового источника с нижней частотой Ω. (В первом приближении для внешнего источника такой переход запрещен, но не во втором.) Но спин S, который в результате такого флип-флопа перешел в состояние «вниз», сразу возвращается в «вверх» благодаря своей сверхскорой релаксации, и спин I, который перешел «вверх», «видит» вокруг себя только спины 5, которые тоже «вверх», и не может флип-флопнуть с ними. Он мог бы флип-флипнуть с любым из них, но для этого нужна энергия Ω+ = (Ω S  + Ω I ), которой в образце нет и спин I остается пойманным «вверх». Таким образом, все спины I переводятся в состояние «вверх» один за другим.

  106