ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Мои дорогие мужчины

Ну, так. От Робертс сначала ждёшь, что это будет ВАУ, а потом понимаешь, что это всего лишь «пойдёт». Обычный роман... >>>>>

Звездочка светлая

Необычная, очень чувственная и очень добрая сказка >>>>>

Мода на невинность

Изумительно, волнительно, волшебно! Нет слов, одни эмоции. >>>>>

Слепая страсть

Лёгкий, бездумный, без интриг, довольно предсказуемый. Стать не интересно. -5 >>>>>

Жажда золота

Очень понравился роман!!!! Никаких тупых героинь и самодовольных, напыщенных героев! Реально,... >>>>>




  156  

Гольдман построил теорию (более изощренную, чем обычная модель локального поля Вейсса), которая предсказывала, что во фтористом калии при положительной температуре, когда внешнее поле направлено вдоль оси [111], стабильной должна оказаться геликоидальная поперечная структура (напомню, что при отрицательной температуре и том же направлении поля мы имели доменный ферромагнетизм). Но как это доказать, если макроскопическая ядерная намагниченность образца равна нулю?

Гольдман придумал замечательно остроумный эксперимент, который я постараюсь объяснить. Вернемся к методу Хартмана и Хана, который мы описали раньше, где резонансный переход поляризации между спинами 19F и спинами 43Са происходит, когда ларморовские частоты обеих сортов спинов, каждая в своем собственном вращающемся эффективном поле, равны. Как раз такой резонансный переход наблюдался в предлагаемой поперечной упорядоченной фазе спинов фтора, хотя никакого радиочастотного поля на спины фтора не накладывали! Объяснение бросалось в глаза: локальное поле Вейсса, которое «видел» каждый спин фтора, само вращалось, что было возможным, если только вращалась вся упорядоченная фаза. Этот эксперимент я храню в своем маленьком личном музее наук.

**Ядерный псевдомагнетизм

Наградив каждый ядерный спин псевдомагнитным моментом μ*, я почувствовал соблазн пойти дальше по этому пути и ввести понятие ядерной псевдонамагниченности: M = Nμ*P, где N — число спинов в единичном объеме, P — ядерная поляризация, а также понятие псевдомагнитной индукции: В* = (H + 4πM*).

Хорошо известно, что в настоящем магнетизме внутри магнитного вещества поле, которое «видит» нейтрон, т. е. то, которое определяет его ларморовскую частоту, не Я, а индукция В (в тридцатых годах у Блоха с Дираком по этому поводу был великий спор; прав оказался Дирак). Было соблазнительно размышлять о том, что по аналогии внутри поляризованной ядерной мишени лар-моровская частота нейтрона Ωn пропорциональна псевдомагнитной индукции В* = (Я + 4πM*) = μ(Н + H*), где Я* = 4πM* = 4πNμ*P является псевдомагнитным полем, которое «видит» нейтроны. Ларморовская частота нейтрона Ωn смещена по сравнению со своим значением в вакууме на ΔΩn = γnH*, где γn - гиромагнитная постоянная нейтрона.

Я недолго размышлял об этой гипотезе, потому что ее оказалось очень легко доказать, пользуясь псевдопотенциалом Ферми, понятием, которое он ввел много лет тому назад (все в этой истории было псевдо-, но вполне реальным).

Оставалось доказать экспериментально физическую сущность псевдомагнитного поля, которого пока еще никто не видел. Для поляризованной протонной мишени это выглядело просто. Псевдомагнитный момент протона μ*(1Н) огромен и псевдомагнитное поле Я* внутри водородной мишени будет порядка двух-трех тесла (!) для стопроцентной поляризации.

Экспериментальная установка была стандартной. Пучок нейтронов со стопроцентной поляризацией проходит через поляризованную протонную мишень, которая погружена в жидкий гелий внутри криостата. При выходе из мишени нейтроны падают на анализатор, который настроен так, чтобы допускать до нейтронного счетчика лишь нейтроны с поляризацией, обратной поляризации пучка. Счетчик, понятно, считает очень мало нейтронов. Радиочастотная катушка, намотанная вокруг образца, создает внутри мишени вращающееся поле с амплитудой Н1. Если частота вращающегося поля равна ларморовской частоте нейтрона внутри мишени, поле резонансно поворачивает спины нейтронов и анализатор допускает к счетчику большее число нейтронов. Скорость счета увеличивается. По значению резонансной частоты, при которой это происходит, можно определить смещение ΔΩn измерить псевдомагнитное поле Я*.

Все это проще простого, но возникла экспериментальная трудность, преодоление которой сделало эксперимент гораздо более интересным и, осмелюсь сказать, более красивым. Чтобы перевернуть спин нейтрона в одну микросекунду (таково было время пролета нейтрона через мишень), требовалось вращающееся поле с амплитудой в сто гауссов, что было немыслимо с катушкой, купающейся в жидком гелии.

Постараюсь объяснить, как мы выбрались из этого тупика, что нелегко описать словами. Да простит мне читатель, которому объяснение покажется тарабарщиной. Накладываем на образец вращающееся радиочастотное поле с амплитудой Н1 в один гаусс (вместо требуемых ста). Частота его сдвинута на небольшую величину Δ (соответствующую сотне гауссов) от ларморовской частоты протона (не нейтрона!!). Эффективное поле Hе , которое тогда «видят» протоны, наклонено по отношению к главному внешнему полю Я на малый угол β = 1/Δ) ≈ (1/100). Вдоль эффективного поля Нe ориентируется ядерная намагниченность M, а также ядерная псевдонамагниченность М* и псевдомагнитное поле Я* = 4πМ*, которое в нашем эксперименте было приблизительно 10000 гауссов! Ввиду малой величины угла β продольная слагающая вектора Я* практически не меняется, но Я* теперь имеет поперечную слагающую, равную Н*1 βH* и (1/100)×10000 ≈ 100 гауссов. Таким образом, мы одарили псевдомагнитное поле поперечной вращающейся слагающей Я* величиной 100 гауссов, как и требовалось.

  156